Adc_Flagchip_FC7240/Src/AdcFlagchip.c

130 lines
4.2 KiB
C

//
// Created by cfif on 07.09.22.
//
#include <SystemDelayInterface.h>
#include "AdcFlagchip.h"
#define VREF 5.0F
static const uint8_t DUMMY_BYTE = 0xFF;
void Get_ADC_Result(tAdcFlagchip *env) {
osMessageQueuePut(env->txAccessQueue, &DUMMY_BYTE, 0, 0);
}
tAdcFlagchip ADC_Initial(
ADC_InstanceType ADCx, // ADC_INSTANCE_0, ADC_INSTANCE_1
PCC_ClkSrcType adcClock, // PCC_CLK_ADC0, PCC_CLK_ADC1
DMA_ChannelType ADC_DMA_CHANNEL, // DMA_CHANNEL_0 .. DMA_CHANNEL_15
IRQn_Type IRQ_DMA,
uint8_t IRQ_DMA_PRIORITY,
uint8_t IRQ_DMA_CHANNEL_PRIORITY,
const uint32_t *DMA_BUF,
uint8_t num_aChannels,
ADC_ChannelCfgType *s_aChannels,
int32_t offset,
double mux,
double div,
ADC_ConvCompleteCallbackType Bsp_ADC_HandleResult
) {
PCC_CtrlType bSP_PCC_Config;
bSP_PCC_Config.eClockName = adcClock;
bSP_PCC_Config.bEn = TRUE;
bSP_PCC_Config.eClkSrc = PCC_CLKGATE_SRC_FOSCDIV;
bSP_PCC_Config.eDivider = PCC_CLK_DIV_BY1;
PCC_SetPcc(&bSP_PCC_Config);
tAdcFlagchip adc = {
.ADCx = ADCx,
.DMA_BUF = DMA_BUF,
.offset = offset,
.div = div,
.mux = mux,
.num_aChannels = num_aChannels,
.txAccessQueue = osMessageQueueNew(1, 1, NULL),
.s_tAdcInitCfg = {
.eResolution = ADC_RESOLUTION_12_BIT, //!< 12 bit resolution
.eAlign = ADC_ALIGN_RIGHT, //!< Align right
.eTriggerMode = ADC_TRIGMODE_SW, //!< Software trigger
.bWaitEnable = false, //!< Disable wait conversion mode
.bCalEnable = false,
.s32CalOffset = 0U,
.s32CalGain = 0U,
.bSequenceGroupModeEnable = false, //!< Disable sequence group mode
.eTrgLatchUnitPri = TRG_LATCH_UNIT_PRI_ROUND_ROBIN, //!< Round robin priority
.eClockDivider = ADC_CLOCK_DIV_1, //!< Adc clock divided by 1
.eSequenceMode = ADC_SEQMODE_SINGLE, //!< Single sequence mode
.eOverrunMode = ADC_OVERRUN_MODE_PRESERVE, //!< When overrun occurred, the old conversion data are preserved
.eVoltageRef = ADC_REF_INTERNAL, //!< Use internal reference
.bHwAvgEnable = false, //!< Disable averaging functionality
.eHwAverage = ADC_AVERAGE_4, //!< Selection for number of samples used for averaging
.aSampleTimes = {4U, 10U, 40U, 80U}, //!< ADC channel sample time options
},
.s_tAdcDmaCfg = {
.bDmaEnable = true,
.eSeqGroupIndex = ADC_SEQUENCE_GROUP_0,
.eDmaInstance = DMA_INSTANCE_0,
.eDmaChannel = ADC_DMA_CHANNEL,
.u8ChannelPriority = IRQ_DMA_CHANNEL_PRIORITY,
.pResultBuffer = (void *) ((uint32_t) DMA_BUF),
.pConvCompleteNotify = Bsp_ADC_HandleResult,
}
};
ADC_Init(ADCx, &adc.s_tAdcInitCfg);
ADC_InitChannel(ADCx, s_aChannels, num_aChannels);
ADC_InitDmaChannel(ADCx, &adc.s_tAdcDmaCfg);
ADC_Enable(ADC_INSTANCE_0);
NVIC_SetPriorityGrouping(NVIC_PRIORITY_GROUP_4);
NVIC_EnableIRQ(IRQ_DMA);
NVIC_SetPriority(DMA_Error_IRQn, IRQ_DMA_PRIORITY);
NVIC_SetPriority(IRQ_DMA, IRQ_DMA_PRIORITY);
return adc;
}
static float *vAdcGet(tAdcFlagchip *env, uint32_t timeout) {
ADC_Start(env->ADCx);
uint8_t res;
uint16_t sent = osMessageQueueGet(env->txAccessQueue, &res, 0, timeout);
if (sent == osOK) {
for (uint8_t i = 0; i < env->num_aChannels; ++i) {
env->pVoltageBuffer[i] = (float) env->DMA_BUF[i] / ((1U << 12U) - 1U) * VREF;
}
}
return env->pVoltageBuffer;
}
tAdcIO vAdcGetIo(tAdcFlagchip *env) {
tAdcIO io = {
.env = env,
.get = (AdcIOTransaction) vAdcGet,
};
return io;
}